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1. SUMMARY

Direct simulations of two time-developing turbulent
wakes have been performed. Initial conditions for the

simulations were obtained from two realizations of a di-

rect simulation of a turbulent boundary layer at momen-

tum thickness Reynolds number 670. In addition, extra

two-dimensional disturbances were added in one of the

cases to mimic two-dimensional forcing. The unforced

wake is allowed to evolve long enough to attain self-

similarity. The mass-flux Reynolds number (equivalent

to the momentum thickness Reynolds number in spatially

developing wakes) is 2000, which is high enough for a
short k-5/3 range to be evident in the slreamwise one-

dimensional velocity spectrum.

Several turbulence statistics have been computed by av-

eraging in space and over the self-similar period in time.

The growth rate in the unforced flow is low compared
to experiments, but when this growth-rate difference is
accounted for, the statistics of the unforced case are in

reasonable agreement with experiments. However, the

forced case is significantly different. The growth rate,
turbulence Reynolds number, and turbulence intensities

are as much as ten times larger in the forced case. In

addition, the forced flow exhibits large-scale structures

similar to those observed in transitional wakes, while the
unforced flow does not.

2. INTRODUCTION

The plane wake studied here is one of several canonical

free shear flows that are used as test flows for the de-

velopment of turbulence models and turbulence control

swategies. In addition, plane wakes are of particular in-

terest in high-lift airfoil configurations, where one lifting
surface (a flap) may be operating in or near the wake of

an upstream surface. The numerical simulations reported

here are the first of several to be performed to provide data

for turbulence modeling relevant to such a configuration.

It is well known that a turbulent plane wake will approach

a self-similar evolution, with thickness growing like x 1/2,

where a_ is streamwise distance. However, the rate at

which this growth occurs can vary considerably. For
example, in the experiments of Wygnanski et al. ,1 the

1 db 2 (b is the half-widthofthe wake, definedgrowth rate _
below, and 0 is the momentum thickness) varied from 0.29

to 0.41 depending on the details of the body that generated

the wake. Even larger growth rates can be obtained using
two-dimensional forcing. 1,2 Furthermore, as pointed out
by George 3 and as observed by Wygnanski et al., 1 even if

the mean velocity profiles of various plane wakes are the

same (when properly scaled), profiles of the turbulence
statistics need not be.

As in many free-shear flows, the evolution of large-scale

coherent structures in the plane wake has been of great
interest (e.g. Refs. 4 and 5). Part of the reason for this in-

terest is that the well-known features of Wansitional wakes

(e.g. the Karman street) have been observed in the tur-

bulent wake as well. However, the extent to which such

structures are dynamically important, and how they might
vary among different wakes is not clear.

The apparent non-uniqueness of the self-similar plane

wake is a problem because it complicates the modeling of

the flow. At the same time, it provides an opportunity to

control the evolution of the wake. Progress in predicting
and/or controlling the wake evolution will be facilitated
by more detailed information on both the statistics and

structures in plane wakes, how they are related, and how

and why they vary among different wakes. Direct nu-

merical simulation is an ideal tool for providing some
of this information because it provides absolute control

of the initial/inlet conditions and very detailed informa-

tion about the flow. Two such simulations with differing
initial conditions were performed to address these issues,

and some of the preliminary results are reported here. The

simulations are described in §3, a statistical description of

the two flows is presented in §4, and the sU'uctural features

of the flows are discussed in §5. Finally, some concluding
remarks are given in §6.

3. THE SIMULATIONS

The numerical simulations discussed in this paper
were performed by solving the three-dimensional time-

dependent incompressible Navier-Stokes equations. For

computational efficiency, a temporally evolving plane

wake was simulated rather than the spatially evolving
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flow typical of experiments. The spatially and temporally

evolving wakes differ in that different integral quantities

are preserved. In the time-developing wake, the cross-
stream integrated mass flux deficit m = - f__ 6u dy

is preserved (the velocity deficit is 6U = U - Uc¢,

where U and Uoo are the mean and free-stream ve-

locities, respectively), while in the spatially evolving
wake, the integrated momentum flux deficit U20 =

OO

- f°_oo tSU(Uoo -4- 6U) dy is preserved. In the limit of
small deficits, the temporally evolving wake is equivalent

to a spatially evolving wake viewed in a frame moving
with the free stream, and in this limit, the mass flux deficit

is given by rh = UcoO. In the time-developing wake,
the free stream velocity is irrelevant, only the deficit is

important. Thus, in what follows, nondimensionalization
will be based on rh and the initial magnitude of the veloc-

ity deficit, A. In both flows described here, the Reynolds
number Rein = rh/u is 2000. This Reynolds number is

high enough to produce a short k -5/3 spectral range in

the streamwise one-dimensional specmim (figure 1).

In this study, the solution domain is periodic in the stream-

wise (z) and spanwise (z) directions with periods 50rh/A

and 12.5rn/A respectively. These domain sizes were se-

lected to correspond to those in the boundary layer sim-
ulations from which the initial conditions were obtained

(see below). The domain is infinite in the cross-stream

(y) direction. A Galerkin spectral method 6 was used to

solve the equations.

Initial conditions were generated using two realizations

of a turbulent boundary layer with a momentum thickness
Reynolds number of 670, as computed by Spalart 7. One

boundary layer was used for each side of the wake, with

equal free stream velocities attained at y = -4-oo. Thus,

the simulations represent a temporally evolving approx-

imation to the wake of a zero-thickness flat plate with

turbulent boundary layers at zero angle of attack. In addi-
tion to the boundary layers and their turbulence, one of the

two simulations included extra two-dimensional forcing

in the initial condition. This forcing was used to mimic

the expected receptivity of the trailing edge of the plate
to two-dimensional disturbances. To model the uncon-

trolled nature of the two-dimensional disturbances in a

flat-plate wake, the forcing was introduced by amplifying

all the two-dimensional modes in the boundary layer ini-

tial conditions boya factor of 20. In similar simulations in
a mixing layer,°this amplification factor was needed to

produce a significant effect. The amplification increased

the total initial disturbance energy by a factor of 13, and

the total energy per unit plan area added to the flow by the

forcing was 0.7htA.

4. SELF-SIMILARITY AND STATISTICS

Developed small deficit plane wakes evolve self-similarly,

with thicknesses growing like t1/2 (or :r 1/2 in a spatially

developing wake). Since in a time-evolving wake the total

mass flux deficit m is constant, this implies that the max-

imum velocity deficit magnitude (U 0) decays like t -I/2.

In a spatially evolving wake, the momentum thickness 0 is

constant, which implies that a x -1/2 decay of the deficit

holds in this case. By scaling large-scale quantities with

the local thickness and the velocity deficit, statistical pro-

files at different times (or different downstream locations

in the spatially evolving flow) collapse onto a single curve.
In what follows, the numerically simulated plane wake is
examined for evidence of such self-similar evolution.

A variety of different thickness measures can be used to

characterize the wake locally. To facilitate comparison to

previous experimental data, we will use the half-width b,
which is defined to be the distance between the y-locations

at which the mean velocity is half of U0 (note that some

investigators lake the half-width to be half this distance).

Shown in figure 2 are the time evolutions of b2 and UO 2
for the unforced and forced cases. Both these quantities

should evolve linearly during self-similarity, and indeed

in the unforced flow both have substantial periods of linear

growth. The normalized growth rate (u) is

1 db2 d(bA/rn) 2
a - (1)

rh dt dT" '

where the nondimensional time r is given by r = t A2/rh.

In the unforced flow a = 0.23, which is significantly

smaller than the experimental value of 0.34 in Ref. 9.

In contrast, the forced case has no extended period of

self-similar growth, though there are short periods during

which b2 and/or Uo 2 develop linearly. The best chance
for self-similarity in the forced case occurs near the end of

the simulation (r > 40). Here bU0 (figure2(c)) appears to

be reaching a plateau indicating that band U0 are evolving

together (a = 1.63 at this time in the unforced flow).
Furthermore the statistical profiles discussed below are

roughly consistent with self-similarity.

2
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Another global quantity that can be examined for evidence

of self-similarity is

FS = e dy, (2)
OO

the integrated rate of dissipation of kinetic energy (e =

2uSijSij, where Sij is the strain-rate tensor and u is the
kinematic viscosity). This quantity has units of velocity

cubed and therefore should scale with UO3. Thus E/U3o
should be a constant during self-similarity. In figure 2(d),

it is shown that E/U 3 is indeed approximately constant
for 40 < r < 90 in the unforced case, but the evidence for

self-similarity is less convincing during the approximately
self-similar period (r > 40) in the forced case.

The self-similarity of the unforced flow is further sup-

ported by the mean velocity and Reynolds stress pro-
files, when plotted in self-similar coordinates. Shown

in figure 3 are the mean velocity and streamwise ve-

locity variance at four times in the self-similar period
(42.8 < r < 91.5) of the unforced flow. The collapse of
these curves is good. Profiles from times outside of this

period (not shown) do not collapse nearly as well. As in

the mixing layer simulations in Ref. 8, the breakdown of

self-similarity at late times appears to be caused by the
finite size of the computational domain. In the forced

flow, the mean and variance profiles also collapse quite
well during the approximate self-similar period (r > 40).
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Since the average quantities collapse in self-similar coor-

dinates, they can also be averaged in time over the self-

similar period, reducing the statistical noise in the profiles.

The results of such averaging are shown in figures 4 and 5

for the mean velocity and Reynolds stress components,

respectively. Also shown are the data from Ref. 9. Note

that the magnitudes of the Reynolds stress components in
the forced case are an order of magnitude larger than the

curves shown in figure 5, and are therefore omitted (see

figure 6). Since the wake is statistically symmetric, the

statistical sample in these profiles has been increased by

averaging the two sides of the wake together. Only half

of each average profile is shown. The agreement between

the experimental and unforced computational mean ve-

locity is very good. However, the mean profile from the
forced flow does not agree as well, and is not smooth.

This is presumably because of the poor statistical sam-

ple of the large structures that dominate the forced flow

(see §5). The components of the Reynolds stress tensor
in the unforced computation shown in figure 5 have the

same .g9eneral shape as those measured in the Weygandt &
Mehta experiments, but the magnitudes are smaller.

Part of the reason for this difference in Reynolds stress

magnitude is the difference in _rowth rates noted above.
As was pointed out by George, a variety of self-similar
turbulent flows could occur in the same flow situation,

and even if the (normalized) mean velocities are the same,

the growth rates, Reynolds stresses, and dissipation rates

(for example) can differ. In fact there is a direct relation-

ship between the magnitude of the (normalized) Reynolds

shear stress and the growth rate _. To see this, express

the mean velocity and Reynolds shear stress in self-similar
form:

6U = Uof(_ ) - u'_ = Rg((), (3)

where ( = y/b, f and g are the self-similar profiles, and R

is the scale for the Reynolds stress. In the time-developing

wake, the mean velocity equation (in the inviscid limit) is

06U

0---_ -- Oy (4)

Substituting the self-similar forms, evaluating the deriva-

tives, and rearranging yields

f + (f, 2bR t_ g . (5)
rho, Uo

If two different wakes have the same f, then they must

have the same gt profile and the scaling R must be given

by
2 ri_

R = V_ e_-_Ob . (6)

Since rn/(Uo b) is a shape factor of order one (see fig-

ure 2(c)), the Reynolds shear stress should scale like

U2a. It is reasonable to assume that all components of
the Reynolds stress tensor scale this way, and that at least
some of the differences in the velocity variances shown

in figure 5 are due to growth rate differences.

Profiles of the Reynolds stress tensor components normal-

ized by Uga are shown in figure6 for both the simulations
and the experiments of Ref. 9. This scaling with a has in-

deed reduced the differences among the different wakes.

The unforced simulation and the experiments agree well

with regard to the level of u 2, w 2, and _-Y, but the level

of v2 is still about 30% higher i__nthe experiments. It

is interesting that the levels of u2 and v 2 in the forced

case can be several times larger than those in the other

data, while the w 2 and __ profiles agree reasonably well

for all three wakes when scaled with U2a. Apparently

the strong forcing of the two-dimensional modes has pro-
duced a wake that is qualitatively different from the other

two wakes (see §5). As pointed out in Ref. 3, the pro-

files of all the Reynolds stress tensor components are not

expected to collapse perfectly in this scaling due to the
unknown variation of the various terms in the Reynolds

stress balance equations. A similar variation in the shapes

of the u 2 profiles in different wakes was reported in Ref. 1.

In addition to velocity statistics, vorticity statistics can be
obtained from the simulations. As in Ref. 8, the scaling of

E with U03implies that the vorticity variances should scale

like RebU2/b 2, where Re b = Uob/v. However, since

Re b is a constant in a self-similar wake, the Reynolds
number factor would only be important when comparing

wakes at different Reynolds numbers. The vorticity vari-

ances averaged over the self-similar period in the unforced

flow are shown in figure 7. The relative magnitudes of

the variances of the vorticity components are in general

agreement with those found in previous computations of
homogeneous shear flows 10 and plane mixing layers 8.

Some of the more difficult statistical quantities to deter-

mine experimentally are the terms in the balance equa-
tions for the Reynolds stresses. As an example, consider
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the equation for q2 = uiui" which in this case of the

time-developing wake is given by

Oq2 2_.fO6U Oq2v O-ff'fi 20u i Ou i F 1 02--_
Ot - Oy Oy Oy Re Ozj Oxj Re Oy 2

(7)
The terms on the right hand side are interpreted (in order of

appearance) as production, turbulent diffusion, pressure

diffusion, dissipation, and viscous diffusion. The average

of the terms in this equation over the self-similar period

in the unforced flow are shown in figure 8.

Since the shear is zero at the center of the wake, the

production is zero there. Production ofq 2 thus peaks in the

maximum shear region and turbulent diffusion provides

transport to the center of the wake. Turbulent diffusion

also transports q2 to the edge of the wake, and is thus

responsible for most of the growth in the width of the q2

profile. There is also a small transport from the edge of
the wake to the center by pressure diffusion. The negative

time derivative near the center of the wake produces the

t -1 decay in the maximum q2 and the growth in the

width of the turbulent region is reflected in the positive

time derivative at the edge of the wake. For a self-similar
wake, the time derivative can be computed directly from

the q2 = U2h(() profile, with the result

bOq 2 rh(_)u3 o_- _ob_ h+ Oh' (8)

At the centerline, h = q2/U2 is 0.12 and the shape factor

fi_/(Uob ) is 1.04 (see figure 2(c)), resulting in a centerline
value of the time derivative of 0.028. This is somewhat

larger than the value (0.023) computed from the simula-

tion data and plotted in figure 8. The discrepancy is a

measure of the departure of the unforced simulation from

self-similarity, and the adequacy of the statistical sample.

5. STRUCTURES

The large statistical differences between the forced and
unforced wakes discussed in §4 are a manifestation of

differences in the structure of the turbulence in these two

flows. This difference can be seen in figure 9, where span-

wise vorticity contours in x-y planes of both the forced
and unforced flows are shown. In the forced case, there

are concentrations of vorticity fluctuations that occur al-

ternately on one side of the wake or the other, similar
to the Karman street commonly observed in transitional

wakes. By examining other x-y planes (not shown), one
can determine that these large-scale features are spanwise

coherent. The vorticity concentrations are also accom-

panied by large incursions of irrotational fluid into the
wake. In contrast, the unforced wake exhibits no such

vorticity concentrations, and relatively small incursions
of irrotational fluid. It appears to consist of a slab of

turbulence with undulating boundaries. Forcing was also

found to produce large-scale slructures similar to those in
transitional flows in the turbulent mixing layers of Ref. 8.

Another striking difference between the two flows is that

•the forced flow appears to have vorticity fluctuations of
much smaller scale. This is consistent with the appear-

ance of the streamwise spatial spectra in figure 1 and the

fact that finer spatial resolution was required to compute

the forced flow. Comparing figure 9(a) and figure 9(b ), it

appears that the forced flow has a larger Reynolds number
than the unforced flow since there are larger large-scale

features, and smaller small-scale features. Indeed the cen-
terline value of the turbulence Reynolds number q4/(c u)

is an order of magnitude larger in the forced case than in

the unforced case (4000 versus 460), this despite the fact

that the Reynolds numbers based on m are the same in
the two flows.

The mixing layer simulations of Rogers & Moser 8' 11 sug-

gest that whenever there is a flow region that is dominated

by large-scale strain, but largely devoid of (spanwise)

vorticity, it is likely that long coherent vortices aligned
with the extensional strain (so-called rib vortices), will

6
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Figure 9. Contours of spanwise vorticity in an x-y plane in (a) the unforced flow at r = 91.5 and (b) the forced flow

at r = 50.0. The contour increments are (a) 2.5Uo/b and (b) 20Uo/b, and negative contours are dotted. Tic marks are

at 5rn/A intervals.

develop. Such a region might be expected between the
vortices in a Karman Street, and indeed rib vortices have
been observed in simulations of transitional wakes. 12 A

strain-dominated region of this type appears to exist in the

forced flow shown in figure 9(b)(at x ,_ 35rn/A), but no

rib vortices were found at this time. However, at an earlier

time (r = 26.3, figure 10), the strain-dominated region is

also present and rib vortices occur there. The rib vortices

can be seen in figure 10(b) as the long thin streamwise-

oriented regions oflargeenstrophyat x _ 35rh/A. These

vortices span the strain-dominated region, and do not oc-

cur elsewhere in the forced flow or anywhere in the un-

forced flow, which has no such strain-dominated regions.

The reason for the disappearance of the rib vortices at

later times has not yet been investigated.

6. CONCLUSIONS

Two turbulent time-developing plane wakes (forced and

unforced) have been simulated numerically, and at least

the unforced wake evolves self-similarly for a significant

period. The growth rate of the unforced wake is low by

30% compared to experimentally observed growth rates.

In the unforced flow, the magnitude of all__thecomponents

of the Reynolds stress tensor except v 2 are in general

agreement with the experimental data of Ref. 9 when

scaled by the growth rate. The vertical velocity variance

is lower than the experiments by 30%.

The forced flow is not convincingly self-similar. But, to-

ward the end of the simulation, it appears to be beginning

a self-similar growth period. However, the growth rate

is an order of magnitude larger than in the unforced

flow, and the turbulence levels are several times larger,

even when the difference in growth rates is accounted

for. Also, the turbulence Reynolds number is much larger

than in the unforced flow, even though the bulk Reynolds

numbers are the same. Finally, the forced flow exhibits

large-scale structures similar to those observed in transi-

tional wakes, though no such structures were present in

the unforced flow. The strong forcing has resulted in a

qualitatively different turbulent flow. It is not clear if this
difference would be maintained if the flow could continue

to evolve.
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